Document Representation with Statistical Word Senses in Cross-Lingual Document Clustering
نویسندگان
چکیده
Cross-lingual document clustering is the task of automatically organizing a large collection of multi-lingual documents into a few clusters, depending on their content or topic. It is well known that language barrier and translation ambiguity are two challenging issues for cross-lingual document representation. To this end, we propose to represent cross-lingual documents through statistical word senses, which are automatically discovered from a parallel corpus through a novel cross-lingual word sense inductionmodel and a sense clustering method. In particular, the former consists in a sense-based vector space model and the latter leverages on a sense-based latent
منابع مشابه
A Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کاملCLGVSM: Adapting Generalized Vector Space Model to Cross-lingual Document Clustering
Cross-lingual document clustering (CLDC) is the task to automatically organize a large collection of cross-lingual documents into groups considering content or topic. Different from the traditional hard matching strategy, this paper extends traditional generalized vector space model (GVSM) to handle cross-lingual cases, referred to as CLGVSM, by incorporating cross-lingual word similarity measu...
متن کاملA New Document Embedding Method for News Classification
Abstract- Text classification is one of the main tasks of natural language processing (NLP). In this task, documents are classified into pre-defined categories. There is lots of news spreading on the web. A text classifier can categorize news automatically and this facilitates and accelerates access to the news. The first step in text classification is to represent documents in a suitable way t...
متن کاملیک مدل موضوعی احتمالاتی مبتنی بر روابط محلّی واژگان در پنجرههای همپوشان
A probabilistic topic model assumes that documents are generated through a process involving topics and then tries to reverse this process, given the documents and extract topics. A topic is usually assumed to be a distribution over words. LDA is one of the first and most popular topic models introduced so far. In the document generation process assumed by LDA, each document is a distribution o...
متن کاملخوشهبندی اسناد مبتنی بر آنتولوژی و رویکرد فازی
Data mining, also known as knowledge discovery in database, is the process to discover unknown knowledge from a large amount of data. Text mining is to apply data mining techniques to extract knowledge from unstructured text. Text clustering is one of important techniques of text mining, which is the unsupervised classification of similar documents into different groups. The most important step...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJPRAI
دوره 29 شماره
صفحات -
تاریخ انتشار 2015